
Liquidshop 3 - The Liquidsoap Workshop - 2023-05-30

Radio
France

Building a production ready Liquidsoap stack for
radio broadcasting

https://radiofrance.fr

https://github.com/radiofrance/rf-liquidsoap
Youenn Piolet Cloud engineer & DevOps, Team “Fonda-
tion” Github: uZer Keybase: https://keybase.io/ypiolet
Mastodon: @schematicwizard@merveilles.town



About this presentation

Last week, we open sourced our Liquidsoap scripts:
▶ https://github.com/radiofrance/rf-liquidsoap

Previous presentations about our infrastructure:
▶

https://archive.fosdem.org/2020/schedule/event/om_audio_streaming/
▶ https://www.liquidsoap.info/liquidshop/1/
▶ https://www.liquidsoap.info/liquidshop/1/slides/piolet.pdf
▶ https://youtu.be/UnHfgDmi9_w

Main focus today:

1. Reminder of our context
2. Requirements for a production ready, Liquidsoap based

streaming platform
3. Our Liquidsoap demo stack and scripts



1. Our context

1.1. Radio France
Information, Education, Entertainment, Culture Pub-
lic service with 903 journalists, 9 special reporters 1058
live events, 243 897 visitors in 2019 A national symphony
orchestra

▶ ~70 Million listeners per month for on-demand content
▶ ~70 Million monthly web visitors (doesn’t include France Info)

Our broadcasting mediums: FM, DAB+, Internet (Live radio,
podcasts, on demand content…)



1. Our context

1.2. Radio France - Direction du numérique
~200+ coworkers handling the presence of Radio France
on the Internet

▶ Developers
▶ Infrastructure Engineers
▶ Designers
▶ Marketing Teams
▶ Innovation experts
▶ Data Engineers

We love open source!



1. Our context

1.3. Radiophonic activity
~~~graph-easy --as=boxart
[7 national channels]
[45 local channels]
[26 webradios]
[on demand channels]
~~~

~80x 24/7 radio streams
https://www.acpm.fr/Les-chiffres/Frequentation-
Radios/Classement-des-Radios-Digitales/Par-marque/Classement-
France



1. Our context

1.4. Liquidsoap in Radio France cloud based environment
1.4.1. We use Liquidsoap like a real time pipeline for audio:

▶ raw inputs, coming from out studios
▶ buffers
▶ encoding: AAC & MP3, multiple qualities
▶ output: icecast & hls
▶ monitoring and operations over sources

~~~graph-easy --as=boxart
[inputs] - SRT -> [source selection] - encoding -> [mp3, aac] - streaming -> [icecast, hls]
~~~



1. Our context

1.4. Liquidsoap in Radio France cloud based environment
1.4.2. We stream the audio we receive as is

▶ No playlist
▶ No audio transitions
▶ No advanced audio processing/filters or normalization for now



1. Our context

1.4. Liquidsoap in Radio France cloud based environment
1.4.3. We kept it simple
For one livestream -> (at least) one Liquidsoap process
Keeping the latency introduced by the pipeline as low as possible.

Most of the latency is introduced by the streaming proto-
cols: Icecast, HLS…



2. Requirements for a Liquidsoap based streaming platform
2.1. A standard production environment
What’s needed for a real time audio streaming production?

Figure 1: basic.png



2. Requirements for a Liquidsoap based streaming platform

2.1. A standard production environment
2.1.1. Achieving input resilience (1/3)
A self switching input fallback mechanism
radio_prod = fallback(

id="fallback_prod",
track_sensitive=false,
[

...
]

)



2. Requirements for a Liquidsoap based streaming platform

2.1. A standard production environment
2.1.1. Achieving input resilience (2/3)
Protect stream continuity at all cost to avoid client disconnection,
with a safe_blank source
radio_prod = fallback(

id="fallback_prod",
track_sensitive=false,
[

...
(safe_blank:source(audio=pcm,video=none,midi=none))

]
)



2. Requirements for a Liquidsoap based streaming platform

2.1. A standard production environment
2.1.1. Achieving input resilience (3/3)
Multiple paths for the audio coming from the studios
input_list = [

{name="voieA_caller1", is_autofallback=true, port=10000},
{name="voieA_caller2", is_autofallback=true, port=10001},
{name="voieB_caller1", is_autofallback=true, port=10002},
{name="voieB_caller2", is_autofallback=true, port=10003},
{name="override_caller1", is_autofallback=false, port=10004},
{name="override_caller2", is_autofallback=false, port=10005},
{name="sat_sat1", is_autofallback=true, port=10006},

]



2. Requirements for a Liquidsoap based streaming platform

2.1. A standard production environment
2.1.2. Achieving output resilience
Multiple Liquidsoap instances per station you stream
Useful for Liquidsoap resilience
eg. 2 production servers, 2 preprod servers, one instance of
Liquidsoap per channel, replicated on every server.
That way, you can perform maintainances or script modifications
without service disruption

Multiple streaming servers and protocols
Useful for accessibility, loadbalancing, SLA…

▶ Icecast: Icecast master/relay architecture
▶ HLS: using CDN or cache mechanisms



2. Requirements for a Liquidsoap based streaming platform

2.1. A standard production environment
2.1.3. Observability on Liquidsoap

▶ Service availability (Is Liquidsoap running?)
▶ Input status (Do we receive our audio sources?)
▶ Output status (Can we produce audio?)
▶ Logs
▶ Network metrics (Bandwidth usage, latency, jitter…)
▶ System metrics (CPU, memory…)
▶ Pipeline metrics (Buffers, latency, clocks…)
▶ Audio metrics (LUFS levels, is the audio blank?)



2. Requirements for a Liquidsoap based streaming platform

2.1. A standard production environment
2.1.4. Tools for operators (1/6)

An API to get information about Liquidsoap state:
Liquidsoap’s Harbor HTTP API
https://www.liquidsoap.info/doc-dev/harbor_http.html
harbor.http.register(port=harbor_http_port, method="GET", "^/readiness$", handler(get_readiness, "GET"))
harbor.http.register(port=harbor_http_port, method="GET", "^/livesource$", handler(get_livesource, "GET"))



2. Requirements for a Liquidsoap based streaming platform
2.1. A standard production environment
2.1.4. Tools for operators (2/6)

An API to get information about Liquidsoap state:
def write_http_response(code, data) =

http.response(code=code, headers=[("Content-Type", "application/json")], data=data)
end

def handler(h, method) =
def response(~protocol, ~data, ~headers, uri) =

let (code, data) = h(protocol, data, headers, uri)
log.info(label="httplog", "#{code} #{method} #{uri}")
log.debug(label="httplog", "#{code} #{method} #{uri} - #{data}")
write_http_response(code, data)

end
response

end



2. Requirements for a Liquidsoap based streaming platform

2.1. A standard production environment
2.1.4. Tools for operators (3/6)

An API to get information about Liquidsoap state:
Basic example: readiness
## GET /readiness
def get_readiness(_, _, _, _) =

(200, '')
end



2. Requirements for a Liquidsoap based streaming platform
2.1. A standard production environment
2.1.4. Tools for operators (4/6)

An API to get information about Liquidsoap state:
Advanced example: GET current livesource
## GET /livesource
def get_livesource(_, _, _, _) =

preferred = json.stringify(!preferred_live_source)
inputs = json.stringify(list.map(fun (s) -> s.name, input_sources))
real = json.stringify(!real_live_source)
blank = json.stringify(!is_blank)
(

200,
'{"preferred_output": #{preferred}, "inputs": #{inputs}, "real_output": #{real}, "is_output_blank": #{blank}}'

)
end



2. Requirements for a Liquidsoap based streaming platform

2.1. A standard production environment
2.1.4. Tools for operators (5/6)

An API to perform operations, like source selection:
harbor.http.register(port=harbor_http_port, method="GET", "^/livesource$", handler(get_livesource, "GET"))
harbor.http.register(port=harbor_http_port, method="POST", "^/livesource$", handler(post_livesource, "POST"))



2. Requirements for a Liquidsoap based streaming platform
2.1. A standard production environment
2.1.4. Tools for operators (6/6)

An API to perform operations, like source selection:
## POST /livesource
def post_livesource(_, data, _, _) =

if not list.exists(fun (s) -> s.name == data, input_sources) then
(400, '{"error_message": "input #{data} does not exist"}')

else
preferred_live_source := data
# write livesourcestate on disk to persist across restart
ignore(

file.write(data=data, append=false, perms=0o644, livesource_state_path)
)
(200, '{"preferred_output": #{json.stringify(data)}}')

end
end



2. Requirements for a Liquidsoap based streaming platform

2.1. A standard production environment
2.1.5. Alerts

If something goes wrong, we need to be aware quickly.

2.1.6. Runbooks
If something goes wrong, we need to know what to do.



2. Requirements for a Liquidsoap based streaming platform

2.2. A “cloud native” environment



2. Requirements for a Liquidsoap based streaming platform

2.2. A “cloud native” environment
2.2.1. Works without human interactions

The stack should work without needing human interac-
tions.

▶ Autofallback loop in Liquidsoap (as shown previously)
▶ Initial state should be the nominal running state
▶ Autorestart on failure



2. Requirements for a Liquidsoap based streaming platform

2.2. A “cloud native” environment
2.2.2. Using standard tools around Liquidsoap (1/2)
~~~graph-easy --as=boxart
[Metrics: Prometheus]
[Dashboards: Grafana]
[Alerts: Alertmanager]
[Logs: Stdout + Vector/Filebeat to centralize logs...]
~~~



2. Requirements for a Liquidsoap based streaming platform
2.2. A “cloud native” environment
2.2.2. Using standard tools around Liquidsoap (2/2)
Liquidsoap includes a Mirage Prometheus server.
settings.prometheus.server.set(true)
settings.prometheus.server.port.set(6001)

# Metric definition
audit_lufs_metric_create = prometheus.gauge(

labels=["radio", "type", "name"],
help="Audio LUFS Analysis",
"liquidsoap_output_lufs_5s"

)

# Metric instance
set_metric_audio_lufs =

audit_lufs_metric_create(label_values=[radio_name,"output", "radio_prod"])

# Source processing
radio_prod = lufs(window=5., radio_prod)

# Update value
thread.run(every=5., {set_metric_audio_lufs(radio_prod.lufs())})



2. Requirements for a Liquidsoap based streaming platform
2.2. A “cloud native” environment
2.2.3. Industrialization, templating and reproductibility (1/2)
Splitting Liquidsoap configuration in parts improves readability:
� � scripts/

� 00-live.liq # <-- this is the entrypoint
� 10-settings.liq
� 20-prometheus.liq
� 30-formats.liq
� 40-icecast.liq
� 50-hls.liq
� 60-core.liq
� 90-http.liq

In 00-live.liq:
#!/usr/bin/liquidsoap

%include "10-settings.liq"
%include "20-prometheus.liq"
%include "30-formats.liq"
%include "40-icecast.liq"
%include "50-hls.liq"
%include "60-core.liq"



2. Requirements for a Liquidsoap based streaming platform
2.2. A “cloud native” environment
2.2.3. Industrialization, templating and reusability (2/2)
You can make your multipart main script reusable and personalized
at runtime with variables for each livestream you want to build
(each Liquidsoap service you need to run):
� � scripts/
� � config/

� fip.liq
� franceculture.liq
� franceinter.liq

liquidsoap -c /config/fip.liq /scripts/00-live.liq
This is a good way to achieve something close to many
industrialization tools like ansible, chef, puppet: a template
folder + inventory splitting, improving readability, scalability and
reusability.
If you have too many variables, you could even use an external
templating tool like jinja2, jsonnet to generate your inventory.



2. Requirements for a Liquidsoap based streaming platform

2.2. A “cloud native” environment
2.2.4. Version control, release management, lifecycle,
integration
It’s always a good practice to: - use versionning (like git) - describe
a specific version of a component with name, tag or release version
~~~graph-easy --as=boxart
[version 1.0.0: Major feature... ]
[version 1.0.1: Bugfix... ]
[version 1.1.0: Minor feature... ]
~~~
Liquidsoap scripts/templates can be seen like a piece of software,
with it’s own lifecycle and requirements.
Taking profit from common industrialization tools to implement
continuous integration, continuous deployment, gitops, etc.
Using variables and/or a separated inventory makes it easy!



2. Requirements for a Liquidsoap based streaming platform
2.2. A “cloud native” environment
2.2.5. Containers?
Processing an audio livestream with Liquidsoap is almost stateful.
We can find some ideas for mitigation with multiple parallel
liquidsoap process but…

▶ Process interruption == output discontinuity
▶ Sample level synchronization?
▶ Discontinuity in encoder level containers / output codec

containers?
Not the best for Kubernetes or other containerized fail-
able platforms, but still doable!

It is still interesting to use containers:
▶ Manipulation of the Liquidsoap scripts as an artifact or a

volume
▶ Variable values can be set in the environment or in a volume
▶ Easy versionning of Liquidsoap
▶ Easy to manipulate system dependencies (ffmpeg and other

libraries…)
▶ Easy to upgrade, rollback, tests in isolation…
▶ Reproductibility



2. Requirements for a Liquidsoap based streaming platform
2.2. A “cloud native” environment
2.2.6. Basic architecture

Figure 2: basic.png

Figure 3: advanced.png

Figure 4: full.png



3. Our Liquidsoap demo stack and scripts

3.1. Filestructure (1/3)
The . folder:
� � example # Some configuration examples you can use
� � scripts # Our liquidsoap templates

� docker-compose.yml # Run the demo stack
� Makefile # Tools to operate the stack
� README.md # Extensive documentation



3. Our Liquidsoap demo stack and scripts
3.1. Filestructure (2/3)
The ./example folder:
� � example

� � alertmanager # Alertmanager configuration
� config.yml

� � grafana/provisioning # Grafana configuration
� � dashboards # Simple dashboards for the stack

� dashboard.yml
� docker_containers.json
� docker_host.json
� levels.json
� liquidsoap.json
� services.json

� � datasources
� datasources.yml # Tell Grafana to speak to Prometheus

� � liquidsoap # Liquidsoap inventory example
� myradio.liq # Example radio stream: "myradio"

� � nginx
� hls.conf # Nginx configuration for HLS

� � prometheus # Prometheus configuration for metric scrapping
� alert.rules
� prometheus.yml



3. Our Liquidsoap demo stack and scripts
3.1. Filestructure (3/3)
The ./scripts folder: Liquidsoap scripts we use in production
today
� � scripts

� � formats # Encoder profiles
� hls-aac.liq
� hls-libfdk-aac.liq
� icecast-aac.liq
� icecast-libfdk-aac.liq
� icecast-mp3.liq

� 00-live.liq # Entrypoint, the main loop and includes
� 10-settings.liq # Default values
� 20-prometheus.liq # Create metrics
� 30-formats.liq # Include formats profiles
� 40-icecast.liq # Output an Icecast stream
� 50-hls.liq # Output an HLS stream
� 60-core.liq # Source instantiation
� 90-http.liq # The HTTP API



3. Our Liquidsoap demo stack and scripts

3.2. The docker-compose (1/5)
Tests
services:

# Test validity of liquidsoap configuration
liquidsoap-test:

image: savonet/liquidsoap:v2.1.4



3. Our Liquidsoap demo stack and scripts
3.2. The docker-compose (2/5)
Liquidsoap + sources
services:

# Run liquidsoap and create "myradio" stream
liquidsoap-myradio:

image: savonet/liquidsoap:v2.1.4

# Feed liquidsoap with an example SRT source (https://modular-station.com/)
source-voieA-caller1:

image: savonet/liquidsoap:v2.1.4

# Feed liquidsoap with an example SRT source (https://p-node.org/)
source-voieB-caller1:

image: savonet/liquidsoap:v2.1.4

# Feed liquidsoap with an example SRT source (https://datafruits.fm)
source-override-caller1:

image: savonet/liquidsoap:v2.1.4



3. Our Liquidsoap demo stack and scripts

3.2. The docker-compose (3/5)
Streaming services
services:

# Streaming services: icecast
icecast:

image: moul/icecast

# Streaming services: hls (nginx)
hls:

image: nginx:alpine



3. Our Liquidsoap demo stack and scripts
3.2. The docker-compose (4/5)
Monitoring services

# Monitoring
grafana:

image: grafana/grafana:latest
prometheus:

image: prom/prometheus:latest

# Alerting
alertmanager:

image: prom/alertmanager:latest

# Container metrics
cadvisor:

image: gcr.io/cadvisor/cadvisor:latest
redis:

image: redis:latest



3. Our Liquidsoap demo stack and scripts

3.2. The docker-compose (5/5)
Docker volumes!
volumes:

data_grafana: {}
data_hls: {}
data_liquidsoap: {}
data_prometheus: {}



3. Our Liquidsoap demo stack and scripts

3.3. The Makefile
help Display this message
artifact Build binary artifact
test Run test on the liquidsoap configuration
reload Update containers if needed and restart liquidsoap
start Start everything
stop Stop all containers
status Show status of docker containers
clean Stop and remove all containers, networks and volumes
logs Show logs
info Show useful default URLs and service ports



3.4. Demo time!

wow



2147483647. Future, conclusions and Q&A
Room for some improvements:

▶ Variable naming
▶ Liquidsoap script organization
▶ More templating, maybe for a more common usage
▶ Extensive documentation
▶ Known issues (see CHANGELOG.md)
▶ New Grafana dashboards
▶ Inform Tony I’m using https://datafruits.fm to feed my

examples before the presentation. Sorry Tony…!

Still missing:
▶ .github-ci.yml and tests on Github (we were using Gitlab

for now)
▶ Finish docker-compose.yml for alerts & cadvisor
▶ CHANGELOG.md automation
▶ Github Stars


